Rotational spectroscopy of the two higher energy conformers of 2-cyanobutane

Laboratory spectroscopic data of large and complex molecules are of upmost importance for the astronomy community to detect new molecular species in space and to achieve a greater understanding of the chemistry involved in star forming regions and processes. In our publication we present high-resolution rotational spectroscopy of the two higher energy conformers of 2- cyanobutane (C4H9CN), a a member of a larger family of cyanides.

Accurate Rotational Rest Frequencies for Ammonium Ion Isotopologues

We report rest frequencies for rotational transitions of the deuterated ammonium isotopologues NH3D+, NH2D2+, and NHD3+, measured in a cryogenic ion trap machine. For the symmetric tops NH3D+ and NHD3+, one and three transitions are detected, respectively, and five transitions are detected for the asymmetric top NH2D2+.

The First Laboratory Detection of Vibration-rotation Transitions of 12CH+ and 13CH+ and Improved Measurement of Their Rotational Transition Frequencies

C–H stretches of the fundamental ions CH+ and 13CH+, which have long been searched for, have been observed for the first time in the laboratory. The state-dependent attachment of He atoms to these ions at cryogenic temperatures has been exploited to obtain high-resolution rovibrational data. In addition, the lowest rotational transitions of CH+13CH+ and CD+ have been revisited and their rest frequency values have improved substantially.

Spectroscopy of the low-frequency vibrational modes of CH3+ isotopologues

The low-frequency stretching and bending vibrations of the isotopologues  and  have been recorded at low temperature and low resolution. For this, a cryogenic 22-pole trapping machine coupled to an IR beamline of the FELIX free electron laser facility has been used. To record the overview spectra, the laser induced reactions have been applied for these species. As this scheme is not applicable to , the latter has been tagged with He and subsequently dissociated by the IR beam.